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We rigorously derive from first principles the generic Landau amplitude equation that describes the primary
bifurcation in electrically driven convection. Our model accurately represents the experimental system: a
weakly conducting, submicron thick liquid crystal film suspended between concentric circular electrodes and
driven by an applied voltage between its inner and outer edges. We explicitly calculate the coefficient g of the
leading cubic nonlinearity and systematically study its dependence on the system’s geometrical and material
parameters. The radius ratio � quantifies the film’s geometry while a dimensionless number P, similar to the
Prandtl number, fixes the ratio of the fluid’s electrical and viscous relaxation times. Our calculations show that
for fixed �, g is a decreasing function of P, as P becomes smaller, and is nearly constant for P�1. As P
→0, g→�. We find that g is a nontrivial and discontinuous function of �. We show that the discontinuities
occur at codimension-two points that are accessed by varying �.
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I. INTRODUCTION

With the substantial progress realized in the field of pat-
tern formation over the past 15 years has come an increased
need to make stricter comparisons between experiments and
their theoretical descriptions �1�. It has become increasingly
important for first principles theories and numerical models
to closely mirror experimental systems in order to make un-
ambiguous comparisons. A broad range of phenomena is ex-
hibited by laboratory pattern-forming systems, for example,
stationary and traveling patterns, spiral defect chaos, local-
ized structures, and so on. An experimental system is typi-
cally specified by several dimensionless control parameters
which span regions where different patterns are observed.
These regions are bounded by lines or planes in parameter
space. Codimension-two �CoD2� points occur at special val-
ues of the control parameters, and are the nonequilibrium
analogs of multicritical points. Near such points, especially
interesting and complex pattern interactions may be expected
�2–5�.

One of the most successful approaches used to study pat-
terns is the Landau amplitude equation for pattern ampli-
tudes near a bifurcation. Since the equation can be deduced
from symmetry, it has found broad applicability in several
experimental systems including Rayleigh-Bénard convection
�RBC�, Taylor vortex flow �TVF�, and electrohydrodynamic
convection in nematic liquid crystals �EHC� �6�. In this pa-
per, we apply the Landau amplitude formalism to thin film
electroconvection in an annular geometry, a system that has
previously been studied both experimentally �7–11� and
theoretically at the linear stability level �12�. This system has
a rich bifurcation behavior, with numerous CoD2 points
�10,13�.

The Landau amplitude equation can be rigorously derived
from the complete set of underlying dynamical equations by
perturbative expansions about the bifurcation point. Very dif-
ferent physical systems with a common symmetry-breaking
bifurcation have, up to parameter-dependent coefficients,
identical amplitude equations. Whereas this universal de-

scription has been tremendously successful in describing the
pattern near the bifurcation, its quantitative verification relies
heavily on comparing absolutely the parameter-dependencies
of the measured and calculated coefficients. This strategy has
seldom been executed and to our knowledge only in RBC,
TVF, and EHC has it been generally successful �6�. Whereas
these systems are three-dimensional �3D�, electroconvection
in an annular fluid film, the system discussed here, is two-
dimensional �2D�. RBC, TVF, and to a lesser extent EHC, in
large part owe their spatiotemporal richness to the extra spa-
tial dimension. The comparatively simpler spatio-temporal
structure of 2D thin film electroconvection is accentuated by
its special geometry. The annular film results in a naturally
periodic experimental system. This azimuthal periodicity,
and thus the absence of lateral boundaries, simplifies the the-
oretical treatment and invites interesting experimental sce-
narios such as interposing convection with shear in a closed
channel �8,10,12�.

In this paper, we present a detailed study of the primary
bifurcation to electroconvection in an annular film. The film
geometry is shown in Fig. 1. We have previously shown
experimentally that the system is adequately modeled by a
Landau amplitude equation with a cubic nonlinearity �9�.

FIG. 1. The coordinate system and film geometry.
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Our aim here is to derive rigorously the parameter depen-
dence of the coefficient g of the cubic nonlinearity and com-
pare it with existing measurements from experimental data.
In Sec. I, we introduce the experimental system, its system-
atically variable dimensionless parameters, and summarize
the protocol by which g was measured. The theoretical
model comprising the underlying physics is briefly intro-
duced in Sec. II. We proceed to set up the mathematical
formalism to reduce the more complicated basic equations to
the Landau amplitude equation truncated at cubic order in
the perturbation expansion. We relegate details of the
multiple-scales expansion to the Appendix. We study how g
varies with the two dimensionless parameters and compare
the trends with experiments in Sec. III. We discuss the im-
plications of our work and present a brief conclusion in Sec.
IV.

Previous experimental results

Electroconvection in an annular film has been the subject
of several experimental and theoretical studies which have
examined convection patterns near onset, interaction with
shear flows, linear stability, bifurcations near CoD2 points,
and more recently turbulent convection �8–12�.

The electroconvection cell is shown schematically in Fig.
1. It consists of an annulus bordered by two concentric stain-
less steel electrodes with inner �outer� radii ri�ro��1 cm. A
film of smectic-A octylcyanobiphenyl �8CB� liquid crystal
doped with tetracyanoquinodimethane �TCNQ� spans the an-
nulus. The resulting film is a weakly conducting 2D annular
disk of width d=ro−ri, radius ratio �=ri /ro, and thickness
s�0.2 �m. Thickness inhomogeneities relax in the freely
suspended film which retains its thickness uniformity even
when convecting. The fluid response is Newtonian and the
material parameters of the liquid crystal are well character-
ized by its 2D mass density �, molecular viscosity �, and
electrical conductivity 	. The cell is housed in a vacuum
chamber which doubles as a Faraday cage. An experiment
consists of drawing a uniform film, placing it under a
vacuum, and applying a dc voltage V to the inner electrode
while holding the outer electrode at ground potential. The
current I through the film is measured. By varying V a
current-voltage characteristic is obtained. More details re-
garding the experimental apparatus and the data acquisition
procedure are given in Ref. �9�.

A representative I-V curve is shown in Fig. 2�a�. A con-
vection threshold at a critical voltage V=Vc

0 is clearly ob-
served. The current is transported by ohmic conduction for
V
Vc

0 while convection contributes for V�Vc
0. An experi-

mental realization is categorized by the dimensionless pa-
rameters �, already introduced, and P=�0� /�	d, where �0 is
the dielectric permitivity of free space. The parameter P is
the ratio of time scales of electrical and viscous processes of
the film and is analogous to the familiar Prandtl number of
RBC. The experiments explored various � by using different
combinations of inner and outer electrodes. At each �, sev-
eral films of different s and consequently different P were
investigated.

The I-V data can be expressed in terms of the reduced
amplitude A and the forcing parameter �,

A2 =
I

Icond
− 1 and � = � V

Vc
0�2

− 1, �1�

where Icond is the contribution to the total current I that is due
to ohmic conduction. Below the onset of convection, I
= Icond and A=0. When V�Vc

0, then I� Icond. This results in
��0 and A�0. The amplitude A and control parameter � are
then effectively an order parameter and a reduced tempera-
ture for electroconvection. Having transformed the I-V data
using Eq. �1�, the A-� data is then modeled with the phenom-
enological steady state Landau amplitude equation

�A − gA3 − hA5 + f = 0. �2�

In the modeling, g, h, and f are fit parameters with f re-
stricted to be positive. Since g can be negative, the quintic
term in the amplitude equation is necessary. Details regard-
ing the data modeling have been reported in Ref. �9�. An
example of such a fit is shown in Fig. 2�b�.

Our interest in this paper is to investigate the variation of
g with � and P. Previous experiments �9� have explored the
regimes 0.33�0.80 and 1
P
150. Measurements of g
were found to be roughly independent of P except at �
=0.33 and 2
P
8, where g was seen to increase with in-
creasing P. As a function of �, g was found to be generally
increasing with increasing � in overall trend. In the next

FIG. 2. �Color online� �a� A representative current-voltage char-
acteristic. The dashed line is a linear fit to the current-voltage data
for V
Vc

0, indicating the region of ohmic response. At the onset of
electroconvection, the data depart from the ohmic response. Part �b�
shows the amplitude-� curve ��� for the same data as part �a�, as
well as the fit to the Landau amplitude equation �solid line�. In this
case, we have �=0.47, P=20.4, and best-fit parameters g
=1.9±0.1, h=5.1±0.2, and f =0.008±0.002.
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section we recount features of the physical model and set up
the mathematical formalism for perturbatively solving the
equations.

II. MATHEMATICAL FORMALISM

A linear instability mechanism gives rise to electrocon-
vection in a freely suspended fluid film �7,12�. The film, an
annular disk on the z=0 plane, is subjected to electric poten-
tial boundary conditions of V volts at its inner edge �r=ri�
and zero volts at its outer edge �r=ro�. The potential is zero
at infinity. The electrostatic boundary value problem pre-
scribed by these conditions, with the film being a conducting
liquid, implies that a surface charge density develops on the
film’s upper and lower free surfaces. Positive charge prefer-
entially accumulates close to the inner positive electrode and
negative charge at the grounded outer electrode. Conse-
quently, an electric force is exerted on the fluid by the action
of the radial component of the electric field on the surface
charge density. Note the striking analogy with RBC where
thermal boundary conditions on a thermally conducting liq-
uid lead to hotter, less dense fluid near the hot boundary and
colder, more dense fluid near the cold boundary. The action
of the gravitational field on the mass density exerts a force
on the fluid. In both cases when the forcing overcomes dis-
sipation, the fluid becomes linearly unstable to perturbations,
resulting in convection.

The relationship between the electric potential and the
surface charge density at any spatial position on the film is
nonlocal in electroconvection, unlike thermal convection
where the temperature and mass density are locally related.
The surface charge density is directly related to the discon-
tinuity in the component of the electric field perpendicular to
the film at z=0. As a result, electric fields in the full 3D
space determine the charge density of the film at z=0.

We use the cylindrical coordinate system �r ,� ,z�. The
film is in the z=0 plane with radial coordinates between ri
rro and has the areal material parameters described in
Sec. I. It is assumed that the fluid is uniform in temperature
and there is no significant ohmic heating. Since the velocity
field is 2D as the film flows in the z=0 plane, we choose to
describe it implicitly with the streamfunction ��r ,��. The
surface charge density is q�r ,�� and the electric potential is
denoted by �3�r ,� ,z�. The electric potential in the film is for
convenience denoted ��r ,��=�3�r ,� ,z=0�. The fluid is de-
scribed by the incompressible Navier-Stokes equation with
an electrical body force. The surface charge is advected by
the flow and transported by ohmic conduction. Laplace’s
equation is obeyed by the electric potential for z�0. Nondi-
mensionalizing lengths by the film width d=ro−ri, electric
potential by V, and time by �0d /	 in the momentum, charge
conservation, and Laplace equations we get the set of gov-
erning equations

��2 −
1

P
�

�t
	��� � �� � �� � + R��� � � �� q�

=
1

P
���� � �� � · �� ���� � �� � �� � , �3�

�q

�t
+ ��� � �� � · �� q − �2� = 0, �4�

�3
2�3 = 0, �5�

q = − 2
 ��3

�z



z=0+
, �6�

where the dimensionless parameters are

R �
�0

2V2

	�
and P �

�0�

�	d
. �7�

Details regarding the assumptions and the derivation can be
found in Refs. �7,12�.

In the standard manner �6�, we write the streamfunction,
charge density, and electric potential as the sum of the base
state solution and a perturbation. See Ref. �14� for details.
The resulting equations can be succinctly expressed as

LC = B , �8�

where C= ���r ,�� ,q�r ,�� ,��r ,�� ,�3�r ,� ,z��T. See the Ap-
pendix for more information about Eq. �8�.

The multiple-scales perturbation theory employed in our
treatment is the same as that given in Ref. �14� for electro-
convection in a rectangular geometry. We expand Eq. �8�
using the slow time scale T=�t, where �=R /Rc

0−1 is the
reduced control parameter defined earlier in Eq. �1�. Collect-
ing terms of the same expansion order in � we write

L0C0 = B0,

L0C1 + L1C0 = B1,

L0C2 + L1C1 + L2C0 = B2, �9�

for orders �1/2, �, and �3/2. A systematic sequential solution of
the above equations results in the necessary condition

F1�TA + F2A + F4A�A�2 = 0. �10�

The amplitude equation in the fast variables is of the Landau
form

��tA = �A − gA�A�2, �11�

where

� = −
F1

F2
and g = −

F4

F2
. �12�

The functions F1, F2, and F4 are further discussed in the
Appendix. Other details regarding the numerical evaluation
of g and � are also given in the Appendix.

III. DISCUSSION

In this section we present the results of our calculations of
the functional dependencies of g=g�� ,P�. The mode m is a
convecting pattern consisting of m vortex pairs. In lowest
order perturbation theory, it is characterized by a solution
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whose azimuthal part is eim�. We find that all primary bifur-
cations are stationary and to a single mode m, except at spe-
cial codimension-two points at which two modes are simul-
taneously unstable. Our calculations show that the nonlinear
coefficient g is always positive, and therefore that the pri-
mary bifurcation is always supercritical.

Since the experiments on electroconvection are, due to the
values of the physical and dimensional parameters, con-
strained to large P�1, we start by discussing g=g��� for
large and essentially infinite P. In Fig. 3 is plotted the cal-
culated values of g for 0.6�0.8. In overall trend, the
Landau cubic coefficient g increases with � and approaches
a limiting value as �→1. At �=0.8, g=2.570 is within 10%
of the limiting value g=2.842 calculated earlier �14� in a
Cartesian or rectangular geometry. The coefficient g��� de-
creases with � for intervals over which the critical mode m
=mc

0 is constant. This trend is punctuated by discontinuities
in g at values of � where both m and m+1 are equally
unstable; these are the codimension-two �CoD2� points. At
these jumps, the value of g increases and more than compen-
sates for the region of decrease at each m. The result is an
overall increasing trend.

Table I compares experimental measurements of g from
Ref. �9� at six radius ratios with the results of the present
calculations. First note that in spite of the large scatter in the
experimental measurements, they still show the overall in-
creasing trend of g with �. Further, the experiments have

widely separated values of � and so are not able to resolve
the discontinuities in g for which further experimental work
in a restricted but densely sampled range of � would be
needed. And finally, in comparing measurements to the cal-
culations, there is a significant disparity on the order of 10–
30 %. Interestingly, the experimental measurements show
that as the radius ratio is decreased, the Landau cubic coef-
ficient becomes negative. This implies that there is at least
one tricritical point �g=0� that demarcates the super- and
subcritical branches. The current calculations are cumber-
some to extend to smaller � because this requires additional
orders in the expansion of the stream function �15�.

The CoD2 discontinuities in g are larger at smaller � as is
evident from Fig. 3. To further quantify this observation, we
have graphed the fractional discontinuity in g, 2�gm+1

−gm� / �gm+1+gm�, versus the fractional change in the mode
number, 2�m+1−m� / �m+1+m�, at several CoD2 points, as
shown in Fig. 4. In the above, gm is the value of g for a
particular critical mode m=mc

0. For the CoD2 point at m
=8,9, the jump in g is about 3% suggesting that experiments
looking at the behavior near CoD2 points will have typically

TABLE I. Experimental measurements of the coefficient of the
cubic nonlinearity, g. The theoretical g at �=0.60, 0.64, and 0.80
are for P=123.

� g �Expt.� P g �Theor.�

0.33 −0.74±0.23 2.1
P
4.4

0.47 1.64±0.06 13.5
P
20.7

0.56 0.73±0.15 59.4
P
100.8

0.60 2.72±0.34 31.3
P
38.9 2.372

0.64 1.87±0.10 25.2
P
63.0 2.417

0.80 2.21±0.29 15.3
P
142.8 2.570

1.00 �“plate”� P=� 2.842

FIG. 3. g versus � for P=123. FIG. 4. The fractional discontinuity in g, 2�g / �gm+1+gm�, ver-
sus the fractional change in the critical mode number m=mc

0,
2�m / �2m+1�, at CoD2 points with P=123.

FIG. 5. �Color online� The coefficient g versus P at �=0.674
�solid line� and �=0.676 �dashed line�. The inset shows �dg /dP�
versus P for the same �.
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to measure g with 1% resolution. The current resolution of
experimental measurements is about 10% and will have to be
significantly improved if any meaningful study is to be
made. On the other hand, since the fractional discontinuity in
g increases strongly with the fractional discontinuity in mode
number, it is conceivable that at small mode CoD2 points,
say m=3,4, the discontinuity in g will be very large and
measurements with 5–10 % accuracy may suffice. This will
involve working at small � which is a challenge experimen-
tally since broad films will have to be drawn.

We now discuss the P dependence of g with constant �.
The calculated values of g for 0.001P10 for �=0.674
and 0.676 are plotted in Fig. 5. These � straddle the CoD2
point for m=10,11. The cubic Landau coefficient is practi-
cally constant for P�0.1. However, for small P, g diverges
as P→0. The inset in Fig. 5 shows the absolute value of
dg /dP as a function of P. As P decreases, the discontinuity
in g at the CoD2 point m=10,11 increases as is seen by the
two diverging curves in Fig. 5. For P�1, the fractional dis-
continuity is about 2% growing to 10% for P=0.01 and 30%
for P=0.001. This suggests that experimental measurements
near CoD2 points are better performed at small P. The com-
bination of small � and P are required for large changes in g
through CoD2 points. Unfortunately, experiments can sel-
dom access this regime of parameter space. Most experi-
ments have been performed for ��0.30 and P�1. The lat-
ter restriction is primarily because the material parameters
are only slightly adjustable.

Langford and Rusu have considered several qualitative
bifurcation scenarios for this system �13�. Suppose m and
m+1 are unstable via supercritical transitions. At a CoD2
point where m and m+1 are simultaneously unstable, Ref.
�13� predicts that m becomes unstable first and that m+1
appears at ��0. The secondary transition from m to m+1
can be supercritical or a subcritical. Our work indicates that
the primary bifurcations at CoD2 points are supercritical for
most radius ratios. We are investigating the secondary bifur-
cations at CoD2 points using coupled equations to model the
competition between m and m+1 �15�. Langford and Rusu
also examine the secondary bifurcations that could happen at
a CoD2 point when m occurs first by a subcritical transition

and m+1 appears second via a supercritical transition. Sub-
critical transitions may be possible at small � �15�.

IV. CONCLUSION

In summary, we have examined the variation of g, the
coefficient of the nonlinear term in the amplitude equation,
Eq. �11�, with radius ratio � and Prandtl number P for elec-
troconvection in a two-dimensional annular fluid. We have
observed that the steady-state amplitude of the bifurcation
from a conducting to a convecting fluid can change discon-
tinuously as � passes through CoD2 points. The dependence
of g on P is not strong, except for P
0.1.

In the experiments considered here, the variation of g is a
consequence of changing the geometry of the system via the
radius ratio �. It is also possible to pass through CoD2 points
by applying a Couette shear to the fluid at fixed � �10�.
Experiments revealed that g was found generally to decrease
with increasing shear and discontinuities in g were observed
at CoD2 points �10�. By applying the methods employed in
this paper to the case of nonzero shear, it should be possible
to establish whether codimension-three �CoD3� points exist
at special values of the parameters �15�.

APPENDIX: MULTIPLE-SCALES EXPANSION

The operator L appearing in Eq. �8� is

L =
�4 −

R
r

�r�
�0���

R
r

�rq
�0��� 0

−
1

r
�rq

�0��� 0 �2 0

0 1 0 2�z��·��z=0+

0 0 0 �3
2

� .

�A1�

We have denoted functions of the base state by superscript
�0�. Note that �2=�rr+ �1/r��r+ �1/r2���� while �3

2=�2+�zz.
The vector B is

B =�
1

P
�2�t� −

1

rP
���r������

2�� − �������r�
2��� +

R
r

����q���r�� − ��rq��������
�tq +

1

r
���rq������ − ���q���r���

0

0

� . �A2�

We used a multiple-scales formalism analogous to that
developed for RBC in Ref. �6�, in which a compatibility
condition is derived for the amplitude of the slowly varying

envelope of the convection rolls. We generally adhere to the
notational conventions of Ref. �6� and our treatment is simi-
lar to that of Ref. �14�, adapted to the annular geometry and

CODIMENSION-TWO POINTS IN ANNULAR… PHYSICAL REVIEW E 72, 036211 �2005�

036211-5



including the effects of finite P. The multiple-scales expan-
sion of Eq. �8� gives Eq. �11� where �= �R−Rc

0� /Rc
0, �=

−F1 /F2, g=−F4 /F2,

F1 = �q̄b0
* q̄0 + P−1�̄b0

* �2�̄0� , �A3�

F2 = imc
0Rc

0� �̄b0
*

r
��r�

�0�q̄0 − �rq
�0��̄0�� , �A4�

F4 = imc
0� �̄b0

* Rc
0

r
�− q̄0

*�r�1
� + q̄0�r�2

� − 2�rq̄0
*�1

� + 2q1
��r�̄0

*

+ �rq1
��̄0

* − �rq2
��0� −

�̄b0
*

rP
�2�r�̄0

*�2�1
� + �̄0

*�r�
2�1

�

− �r�1
��2�̄0

* − 2�1
��r�

2�̄0
*� +

q̄b0
*

r
�2�rq̄0

*�1
� + q̄0

*�r�1
�

− �rq1
��̄0

* + �rq2
��̄0 − 2q1

��r�̄0
*�� , �A5�

�¯� = �
ri

ro

r dr�¯� . �A6�

Complex conjugation is represented by a superscript *. The
functions that appear in Eqs. �A3�–�A5� are as follows. The
solutions of the linear stability problem at m=mc

0 are

�0 = �̄0eimc
0�, q0 = q̄0eimc

0�, �0 = �̄0eimc
0�,

�̄0 = �
p

Āp�̄0p, q̄0 = �
p

Āpq̄0p, �̄0 = �
p

Āp�̄0p,

�A7�

�̄0p = Cmc
0;p, �A8�

q̄0p = i�
l

v0plqmc
0;l, �A9�

�̄0p = i�
l

v0pl�mc
0;l. �A10�

The expansion functions Cm;p�r� and �m;l�r ,z� satisfy the
boundary conditions in polar coordinates �12� and qm;l�r�= �
−2��z�m;l�r ,z���z=0+. The functions

�1
� = i�

p

EpC2mc
0;p, q1

� = �
l

alq2mc
0;l, �1

� = �
l

al�2mc
0;l,

�2
� = 0, q2

� = �
l

blq0;l, �2
� = �

l

bl�0;l, �A11�

al = ��
p

Eps2mc
0pl − �N2�2mc

0;l�	� �2mc
0l

2 , �A12�

smpl = �m

r
�rq

�0�Cm;p�m;l� , �A13�

bl = − �N3�0;l�/�0l
2 , �A14�

N1 =
mc

0Rc
0

r
�q̄0�r�̄0 − �rq̄0�̄0� −

mc
0

rP
��r�̄0�

2�̄0 − �̄0�r�
2�̄0� ,

�A15�

N2 =
imc

0

r
��rq̄0�̄0 − q̄0�r�̄0� , �A16�

N3 =
imc

0

r
���rq̄0

*�̄0 − �rq̄0�̄0
*� − �q̄0�r�̄0

* − q̄0
*�r�̄0�� ,

�A17�

satisfy the order � multiple-scales equations. The coefficients
Ep are specified by

�
p

TkpEp = �N1C2mc
0;k� − 2mc

0Rc
0�

l

�N2�2mc
0;l�Z2mc

0kl/�2mc
0l

2 ,

�A18�

Tkp = �2mc
0p

4
�kp − 2mc

0Rc
0�

l

s2mc
0plZ2mc

0kl/�2mc
0l

2 , �A19�

Zmkl = �Cm;k

r
��r�

�0�qm;l − �rq
�0��m;l�� . �A20�

The solutions of the adjoint equations evaluated at m=mc
0 are

�b0 = �̄b0eimc
0�, qb0 = q̄b0eimc

0�, �b0 = �̄b0eimc
0�,

�̄b0 = �
p

Bp�̄b0p, q̄b0 = �
p

Bpq̄b0p, �̄b0 = �
p

Bp�̄b0p,

�A21�

q̄b0p = �mc
0;p, �A22�

�̄b0p = i�
l

vb0plCmc
0;l, �A23�

vb0pl = − smc
0lp/�mc

0l
4 , �A24�

�̄b0p = −
i

r
mc

0Rc
0�r�

�0��̄b0p. �A25�

The coefficients Bp are derived from

�
p

Bp�−
i

r
mc

0Rc
0�rq

�0��̄b0p + �2q̄b0p + 2���z�̄b0p��z=0+	 = 0.

�A26�

The amplitude A is normalized by setting

Nu − 1 =
��qur��

��	Er
�0���

, �A27�

where
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��¯�� =
1

2�
�

0

2�

d��
0

�

r dr�¯� , �A28�

ur= �1/r���� is the radial component of the velocity field, 	

is the conductivity, and Er
�0� is the radial component of the

base state electric field. The Nusselt number Nu is the ratio
of the total current density to the conducted current density,
spatially averaged �14�.

To find the coefficients of the normalized amplitude equa-
tion, Eq. �11�, we evaluate Eqs. �A3�–�A5� for a given � and
P. The charge density expansion functions qm;l are computed
via an approximation of the electrostatic equations in which
� and q are linearly related �12�. The series solutions of the
linear �Eq. �A7�� and adjoint �Eq. �A21�� problems are ter-
minated at p=1. The number of expansion functions em-
ployed in the linear �Eqs. �A9� and �A10��, first-order �Eq.
�A11��, and adjoint �Eqs. �A23�–�A25�� solutions is twenty.
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